Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Total Environ ; 920: 170982, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367723

RESUMO

The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.


Assuntos
Acetaminofen , Ferro , Suínos , Animais , Ferro/química , Peróxidos/química , Oxirredução , Oxigênio
2.
Sci Total Environ ; 920: 170933, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360324

RESUMO

As emerging contaminants, microplastics (MPs) are becoming a matter of global concern, and they have complex interactions with dissolved organic matter (DOM) widely present in aqueous environments. Here, we investigate the molecular interactions between aged polystyrene microplastics (PS-MPs) and fulvic acid (FA) under neutral conditions using a series of analytical techniques. The structural changes of FA and the binding interactions of PS-MPs with FA at a molecular level were explored by fluorescence and FT-IR combined with two-dimensional correlation spectroscopy (2D-COS). Results showed that photoaging of PS-MPs changed the sequence of structural variations with FA. Atomic force microscopy-infrared spectroscopy (AFM-IR) strongly demonstrated that the surface roughness of both pristine and aged PS-MPs greatly increased after FA addition. Meanwhile, AFM-IR and Raman spectroscopy revealed a stronger interaction between aged PS-MPs and FA. The content of oxygen-containing functional groups in PS-MPs increased after aging and after binding with FA, and surface distribution of these functional groups also changed. XPS analyses indicated that the oxygen content in PS-MPs increased after the interaction with FA and the increase in oxygen content was even greater in aged PS-MPs. Overall, these research findings are useful to understand the environmental impacts of DOM-MPs interactions and to address the uncertainty of MPs aging effect on their environmental behavior in aquatic ecosystems.

3.
Sci Total Environ ; 912: 168833, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036120

RESUMO

Bone char is a functional material obtained by calcining animal bones and is widely used for environmental remediation. In this work, iron was inserted into porcine bone-derived bone char via ion exchange to synthesize iron-doped bone char (Fe-BC) for efficient catalysis of hydrogen peroxide. This is the first time that Fe-BC has been used as a catalyst for the activation of H2O2. The effectiveness of the Fe-BC catalyst was influenced by the annealing temperature and the amount of iron doping. The results showed that the activation of H2O2 by the Fe-BC catalyst with the best catalytic performance could achieve 97.6% of APAP degradation within 30 min. Insights from electron paramagnetic resonance (EPR), free radical scavenging experiments and linear sweep voltammetry (LSV) proposed a reaction mechanism based on free radicals dominated degradation pathways (OH and O2-). Iron served as the primary active site in Fe-BC, with defect sites and oxygen-containing groups in the catalyst also contributing to the removal of pollutants. The Fe-BC/H2O2 system demonstrated resilience to interference from common anions (Cl-, NO3-, SO42- and HCO3-) in water, but was less effective against humic acid (HA). Based on the detection of intermediates produced during APAP degradation, possible degradation pathways of APAP were proposed and the toxicity of intermediates was evaluated. This work provides fresh insights into the use of heterogeneous Fenton catalysts for the removal of organic pollutants from water.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Suínos , Peróxido de Hidrogênio/química , Ferro/química , Acetaminofen , Água , Oxigênio , Poluentes Químicos da Água/análise , Catálise , Oxirredução
4.
Can J Infect Dis Med Microbiol ; 2023: 7253779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849973

RESUMO

Background: SARS-CoV-2 induces apoptosis and amplifies the immune response by continuously stressing the endoplasmic reticulum (ER) after invading cells. This study aimed to establish a protein-metabolic pathway associated with ER dysfunction based on the invasion mechanism of SARS-CoV-2. Methods: This study included 17 healthy people and 46 COVID-19 patients, including 38 mild patients and 8 severe patients. Proteomics and metabolomics were measured in the patient plasma collected at admission and one week after admission. The patients were further divided into the aggravation and remission groups based on disease progression within one week of admission. Results: Cross-sectional comparison showed that endoplasmic reticulum molecular chaperone-binding immunoglobulin protein (ERC-BiP), angiotensinogen (AGT), ceramide acid (Cer), and C-reactive protein (CRP) levels were significantly increased in COVID-19 patients, while the sphingomyelin (SM) level was significantly decreased (P < 0.05). In addition, longitudinal comparative analysis found that the temporal fold changes of ERC-BiP, AGT, Cer, CRP, and SM were significantly different between the patients in the aggravation and remission groups (P < 0.05). ERC-BiP, AGT, and Cer levels were significantly increased in aggravation patients, while SM was significantly decreased (P < 0.05). Meanwhile, ERC-BiP was significantly correlated with AGT (r = 0.439; P < 0.001). Conclusions: ERC-BiP can be used as a core index to reflect the degree of ER stress in COVID-19 patients, which is of great value for evaluating the functional state of cells. A functional pathway for AGT/ERC-BiP/glycolysis can directly assess the activation of unfolded protein reactions. The ERC-BiP pathway is closer to the intracellular replication pathway of SARS-CoV-2 and may help in the development of predictive protocols for COVID-19 exacerbation.

5.
Chemosphere ; 326: 138471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963158

RESUMO

The activity of iron-based catalysts in advanced oxidation processes (AOPs) is limited by the redox cycle of Fe(III) and Fe(II). In this work, iron oxychloride (FeOCl) with a unique layered structure was loaded on the bone char (BC) to enhance the activation of peroxymonosulfate (PMS). Characterization of the FeOCl-BC catalyst reveals that the loading of FeOCl changed the composition and structure of BC and BC reduced the bond gap of FeOCl. Acetaminophen (APAP) as a target pollutant could be almost completely degraded at neutral pH, and the removal rate reached 0.6597 min-1. APAP could also be selectively oxidized by FeOCl-BC/PMS system in the presence of some inorganic anions (SO42-, NO3-, and Cl-) and humic acid. Quenching experiments, electron paramagnetic resonance (EPR), chemical probes, and linear sweep voltammetry (LSV) confirm that the primary oxidation mechanism of the FeOCl-BC/PMS system was dominated by 1O2. The 1O2 was generated from the conversion of O2•- and the self-dissociation of PMS, involving the formation of metastable iron intermediates and the redox cycle of Fe(III) and Fe(II). The unique structure of FeOCl, the transport of lattice oxygen and the enrichment of electrons by carbon defects play an essential role in generating reactive species. In this work, the limitation of the redox cycle of Fe(III) and Fe(II) was broken by loading FeOCl on the surface of BC, and a new catalytic mechanism was proposed. This work provides a new perspective for the construction of efficient iron-based catalysts and the practical application of PMS-based AOPs.


Assuntos
Poluentes Ambientais , Oxigênio Singlete , Compostos Férricos , Acetaminofen , Poluentes Ambientais/química , Peróxidos/química , Ferro/química , Compostos Ferrosos
6.
Sci Total Environ ; 871: 162151, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764556

RESUMO

The most important factor that restricts the decomposition of H2O2 in the Fe3+/H2O2 reaction is the slow cycling efficiency of reducing Fe3+ to Fe2+. In this study, the addition of tungsten disulfide (WS2) as a co-catalyst achieved a rapid cycling of the reaction rate-limiting step and a significant enhancement of H2O2 decomposition, which resulted in the effective degradation of acetaminophen (APAP). Results show that 99.6% of APAP (5 mg L-1) could be degraded by H2O2/Fe3+/WS2 system within 2.5 min. The conversion of Fe3+ to Fe2+ occurred mainly on the surface of WS2 due to the redox reaction of the exposed W4+ active sites with Fe3+ after the unsaturated S atoms were bound to protons. Electron paramagnetic resonance (EPR) and radical quenching experiments evaluated the contribution of hydroxyl radical (•OH) and superoxide radical (O2•-) in the degradation of pollutants. WS2 showed good recoverability after four cycles of the reaction. This study provides a new perspective to improve the efficiency of Fe3+/H2O2 and provides a reference for the involvement of transition metal sulfides in advanced oxidation processes (AOPs).

7.
J Clin Med ; 11(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294336

RESUMO

(1) Background: Biomarker and model development can help physicians adjust the management of patients with community-acquired pneumonia (CAP) by screening for inpatients with a low probability of cure early in their admission; (2) Methods: We conducted a 30-day cohort study of newly admitted adult CAP patients over 20 years of age. Prognosis models to predict the short-term prognosis were developed using random survival forest (RSF) method; (3) Results: A total of 247 adult CAP patients were studied and 208 (84.21%) of them reached clinical stability within 30 days. The soluble form of suppression of tumorigenicity-2 (sST2) was an independent predictor of clinical stability and the addition of sST2 to the prognosis model could improve the performance of the prognosis model. The C-index of the RSF model for predicting clinical stability was 0.8342 (95% CI, 0.8086-0.8598), which is higher than 0.7181 (95% CI, 0.6933-0.7429) of CURB 65 score, 0.8025 (95% CI, 0.7776-8274) of PSI score, and 0.8214 (95% CI, 0.8080-0.8348) of cox regression. In addition, the RSF model was associated with adverse clinical events during hospitalization, ICU admissions, and short-term mortality; (4) Conclusions: The RSF model by incorporating sST2 was more accurate than traditional methods in assessing the short-term prognosis of CAP patients.

8.
Int J Biol Sci ; 18(12): 4618-4628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874944

RESUMO

This study aimed to explore the clinical practice of phospholipid metabolic pathways in COVID-19. In this study, 48 COVID-19 patients and 17 healthy controls were included. Patients were divided into mild (n=40) and severe (n=8) according to their severity. Phospholipid metabolites, TCA circulating metabolites, eicosanoid metabolites, and closely associated enzymes and transfer proteins were detected in the plasma of all individuals using metabolomics and proteomics assays, respectively. 30 of the 33 metabolites found differed significantly (P<0.05) between patients and healthy controls (P<0.05), with D-dimmer significantly correlated with all of the lysophospholipid metabolites (LysoPE, LysoPC, LysoPI and LPA). In particular, we found that phosphatidylinositol (PI) and phosphatidylcholine (PC) could identify patients from healthy controls (AUC 0.771 and 0.745, respectively) and that the severity of the patients could be determined (AUC 0.663 and 0.809, respectively). The last measurement before discharge also revealed significant changes in both PI and PC. For the first time, our study explores the significance of the phospholipid metabolic system in COVID-19 patients. Based on molecular pathway mechanisms, three important phospholipid pathways related to Ceramide-Malate acid (Cer-SM), Lysophospholipid (LPs), and membrane function were established. Clinical values discovered included the role of Cer in maintaining the inflammatory internal environment, the modulation of procoagulant LPA by upstream fibrinolytic metabolites, and the role of PI and PC in predicting disease aggravation.


Assuntos
COVID-19 , Progressão da Doença , Humanos , Lisofosfolipídeos , Metaboloma , Metabolômica
9.
Front Immunol ; 13: 913732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812449

RESUMO

Levels of neutralizing antibodies (NAb) after vaccine against coronavirus disease 2019 (COVID-19) can be detected using a variety of methods. A critical challenge is how to apply simple and accurate methods to assess vaccine effect. In a population inoculated with three doses of the inactivated Sinopharm/BBIBP vaccine, we assessed the performance of chemiluminescent immunoassay (CLIA) in its implementation to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) specific antibodies, as well as the antibody kinetics of healthcare workers throughout the course of vaccination. The antibody levels of NAb, the receptor-binding-domain (RBD) antibodies and IgG peaked one month after the second and remained at a relatively high level for over three months after the booster injection, while IgM and IgA levels remained consistently low throughout the course of vaccination. The production of high-level neutralizing antibodies is more likely when the inoculation interval between the first two doses is within the range of one to two months, and that between the first and booster dose is within 230 days. CLIA showed excellent consistency and correlation between NAb, RBD, and IgG antibodies with the cytopathic effect (CPE) conventional virus neutralization test (VNT). Receiver operating characteristic (ROC) analysis revealed that the optimal cut-off levels of NAb, RBD and IgG were 61.77 AU/ml, 37.86 AU/ml and 4.64 AU/ml, with sensitivity of 0.833, 0.796 and 0.944, and specificity of 0.768, 0.750 and 0.625, respectively, which can be utilized as reliable indicators of COVID-19 vaccination immunity detection.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Testes de Neutralização , SARS-CoV-2 , Vacinas de Produtos Inativados
10.
Front Genet ; 13: 865073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350242

RESUMO

Melanoma is an aggressive malignant skin tumour with an increasing global incidence. However, current treatments have limitations owing to the acquired tumour drug resistance. Ferroptosis is a recently discovered form of programmed cell death characterised by iron accumulation and lipid peroxidation and plays a critical role in tumour growth inhibition. Recently, ferroptosis inducers have been regarded as a promising therapeutic strategy to overcome apoptosis resistance in tumour cells. In this study, we reported that nobiletin, a natural product isolated from citrus peel, and exhibited antitumour activity by inducing ferroptosis in melanoma cells. Subsequently, we further explored the potential mechanism of nobiletin-induced ferroptosis, and found that the expression level of glycogen synthase kinase 3ß (GSK3ß) in the skin tissue of patients with melanoma was significantly reduced compared to that in the skin of normal tissue. Additionally, nobiletin increased GSK3ß expression in melanoma cells. Moreover, the level of Kelch-like Ech-associated protein-1 (Keap1) was increased, while the level of nuclear factor erythroid 2-related factor 2 (Nrf2), and haem oxygenase-1 (HO-1) was decreased in nobiletin-treated melanoma cells, suggesting that the antioxidant defence system was downregulated. Furthermore, knockdown of GSK3ß significantly reduced nobiletin-induced ferroptosis and upregulated the Keap1/Nrf2/HO-1 signalling pathway, while the opposite was observed in cells overexpressing GSK3ß. In addition, molecular docking assay results indicated that nobiletin showed strong binding affinities for GSK3ß, Keap1, Nrf2, and HO-1. Taken together, our results demonstrated that nobiletin could induce ferroptosis by regulating the GSK3ß-mediated Keap1/Nrf2/HO-1 signalling pathway in human melanoma cells. Hence, nobiletin stands as a promising drug candidate for melanoma treatment with development prospects.

11.
Allergy ; 77(8): 2404-2414, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35255171

RESUMO

BACKGROUND: The inactivated Sinopharm/BBIBP COVID-19 vaccine has been widely used in the world and has joined the COVAX vaccine supply program for developing countries. It is also well adapted for usage in low- and middle-income nations due to their low storage requirements. OBJECTIVE: This study aims to report on the kinetics, durability, and neutralizing ability of the induced immunity of the BBIBP vaccine, and the intensified antibody response elicited by the booster. METHODS: A total of 353 healthy adult participants, aged 20-74 years, were recruited in this multicenter study. A standard dose of the BBIBP vaccine was administered (Month 0), followed by a second standard dose (Month 1), and a booster dose (after Month 7). Vaccine-induced virus-specific antibody levels (SARS-CoV-2-IgA/IgM/IgG), conventional virus neutralization test (cVNT), pseudovirus neutralization test (pVNT), and surrogate virus neutralization test (sVNT) were monitored over multiple time points. RESULTS: Neutralizing titers induced by the two doses of inactivated vaccine for COVID-19 peaked at Month 2 and declined to 33.89% at Month 6. Following the booster dose, elevated levels of antibodies were induced for IgA, IgG, and neutralizing antibodies, with neutralizing titer reaching 13.2 times that of before the booster. CONCLUSION: By monitoring the antibody titer levels postvaccination, this study has shown that serum antibody levels will decrease over time, but a notable spike in antibody levels postbooster highlights the anamnestic immune response. This signifies that the protection capability has increased following the injection of booster immunization.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Imunização Secundária , Imunoglobulina A , Imunoglobulina G , SARS-CoV-2 , Vacinação
12.
J Leukoc Biol ; 112(4): 861-873, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35156235

RESUMO

The role of heparin-binding protein (HBP) as an acute inflammatory marker in acute exacerbations of interstitial lung disease (AE-ILD) and some stable ILD patients is not well-established. The significance of increasing HBP during an AE-ILD is examined and the first attempt to incorporate HBP into the ILD evaluation system is made. Then, the benefit of HBP in AE-ILD was investigated. ILD patients (n = 108) were divided into subgroups based on the phase and severity of the disease. Linear trends of HBP across subgroups were observed, and correlations with common inflammatory markers were examined. Further, the HBP detection was adopted between serum and bronchoalveolar lavage fluid (BALF). Imaging and pathology changes were evaluated using various scoring criteria and compared to HBP. The relationship between HBP with ventilation, fibrosis progression, and changes in arterial oxygen levels and inflammatory markers were investigated to understand the mechanistic pathways. HBP was significantly higher in patients with AE-ILD at the early stage, compared to patients with ILD at the stable phase and its increase was both found in the serum and BALF. With the remission of the disease, there was a linear trend of progressive decline. HBP identified ILD patients who had co-infections. HBP levels increased earlier than CRP, PCT, and SAA. HBP was associated with pulmonary levels of ventilation and lesions by radiology examination, and its levels were significantly worse in AE-ILD patients. However, HBP did not show a correlation to the pathology quantitative evaluation. In conclusion, HBP could potentially evaluate the progression and prognosis of AE-ILD. Because ILD patients are susceptible to infection, and since HBP can identify co-infection, this marker would be of great clinical importance. HBP is possibly predictive of acute exacerbation.


Assuntos
Doenças Pulmonares Intersticiais , Peptídeos Catiônicos Antimicrobianos , Biomarcadores , Proteínas Sanguíneas , Progressão da Doença , Humanos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/patologia , Oxigênio , Prognóstico
13.
J Biophotonics ; 15(6): e202100349, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150067

RESUMO

Optical coherence tomography (OCT) can differentiate normal colonic mucosa from neoplasia, potentially offering a new mechanism of endoscopic tissue assessment and biopsy targeting, with a high optical resolution and an imaging depth of ~1 mm. Recent advances in convolutional neural networks (CNN) have enabled application in ophthalmology, cardiology, and gastroenterology malignancy detection with high sensitivity and specificity. Here, we describe a miniaturized OCT catheter and a residual neural network (ResNet)-based deep learning model manufactured and trained to perform automatic image processing and real-time diagnosis of the OCT images. The OCT catheter has an outer diameter of 3.8 mm, a lateral resolution of ~7 µm, and an axial resolution of ~6 µm. A customized ResNet is utilized to classify OCT catheter colorectal images. An area under the receiver operating characteristic (ROC) curve (AUC) of 0.975 is achieved to distinguish between normal and cancerous colorectal tissue images.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Cateteres , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Tomografia de Coerência Óptica/métodos
14.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6881-6892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101603

RESUMO

Due to the "curse of dimensionality" issue, how to discard redundant features and select informative features in high-dimensional data has become a critical problem, hence there are many research studies dedicated to solving this problem. Unsupervised feature selection technique, which does not require any prior category information to conduct with, has gained a prominent place in preprocessing high-dimensional data among all feature selection techniques, and it has been applied to many neural networks and learning systems related applications, e.g., pattern classification. In this article, we propose an efficient method for unsupervised feature selection via orthogonal basis clustering and reliable local structure preserving, which is referred to as OCLSP briefly. Our OCLSP method consists of an orthogonal basis clustering together with an adaptive graph regularization, which realizes the functionality of simultaneously achieving excellent cluster separation and preserving the local information of data. Besides, we exploit an efficient alternative optimization algorithm to solve the challenging optimization problem of our proposed OCLSP method, and we perform a theoretical analysis of its computational complexity and convergence. Eventually, we conduct comprehensive experiments on nine real-world datasets to test the validity of our proposed OCLSP method, and the experimental results demonstrate that our proposed OCLSP method outperforms many state-of-the-art unsupervised feature selection methods in terms of clustering accuracy and normalized mutual information, which indicates that our proposed OCLSP method has a strong ability in identifying more important features.

15.
Eur J Radiol ; 145: 110029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34801874

RESUMO

PURPOSE: To assess the impact of adjunctive ultrasound guided diffuse optical tomography (US-guided DOT) on BI-RADS assessment in women undergoing US-guided breast biopsy. METHOD: This prospective study enrolled women referred for US-guided breast biopsy between 3/5/2019 and 3/19/2020. Participants underwent US-guided DOT immediately before biopsy. The US-guided DOT acquisition generated average maximum total hemoglobin (HbT) spatial maps and quantitative HbT values. Four radiologists blinded to histopathology assessed conventional imaging (CI) to assign a CI BI-RADS assessment and then integrated DOT information in assigning a CI&DOT BI-RADS assessment. HbT was compared between benign and malignant lesions using an ANOVA test and Tukey's test. Benign biopsies were tabulated, deeming BI-RADS ≥ 4A as positive. Reader agreement was assessed. RESULTS: Among 61 included women (mean age 48 years), biopsy demonstrated 15 (24.6%) malignant and 46 (75.4%) benign lesions. Mean HbT was 55.3 ± 22.6 µM in benign lesions versus 85.4 ± 15.6 µM in cancers (p < .001). HbT threshold of 78.5 µM achieved sensitivity 80% (12/15) and specificity 89% (41/46) for malignancy. Across readers and patients, 197 pairs of CI BI-RADS and CI&DOT BI-RADS assessments were assigned. Adjunctive US-guided DOT achieved a net decrease in 23.5% (31/132) of suspicious (CI BI-RADS ≥ 4A) assessments of benign lesions (34 correct downgrades and 3 incorrect upgrades). 38.3% (31/81) of 4A assessments were appropriately downgraded. No cancer was downgraded to a non-actionable assessment. Interreader agreement analysis demonstrated kappa = 0.48-0.53 for CI BI-RADS and kappa = 0.28-0.44 for CI&DOT BI-RADS. CONCLUSIONS: Integration of US-guided DOT information achieved a 23.5% reduction in suspicious BI-RADS assessments for benign lesions. Larger studies are warranted, with attention to improved reader agreement.


Assuntos
Neoplasias da Mama , Tomografia Óptica , Biópsia , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Ultrassonografia de Intervenção , Ultrassonografia Mamária
16.
Biomed Opt Express ; 12(9): 5720-5735, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692211

RESUMO

A machine learning model with physical constraints (ML-PC) is introduced to perform diffuse optical tomography (DOT) reconstruction. DOT reconstruction is an ill-posed and under-determined problem, and its quality suffers by model mismatches, complex boundary conditions, tissue-probe contact, noise etc. Here, for the first time, we combine ultrasound-guided DOT with ML to facilitate DOT reconstruction. Our method has two key components: (i) a neural network based on auto-encoder is adopted for DOT reconstruction, and (ii) physical constraints are implemented to achieve accurate reconstruction. Both qualitative and quantitative results demonstrate that the accuracy of the proposed method surpasses that of existing models. In a phantom study, compared with the Born conjugate gradient descent (Born-CGD) reconstruction method, the ML-PC method decreases the mean percentage error of the reconstructed maximum absorption coefficient from 16.41% to 13.4% for high contrast phantoms and from 23.42% to 9.06% for low contrast phantoms, with improved depth distribution of the target absorption maps. In a clinical study, better contrast was obtained between malignant and benign breast lesions, with the ratio of the medians of the maximum absorption coefficient improved from 1.63 to 2.22.

17.
Sci Total Environ ; 799: 149506, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375868

RESUMO

Iron oxychloride (FeOCl) is a known effective iron-based catalyst and has been used in advanced oxidation processes (AOPs). This study intends to achieve more facile free radicals generation from peroxymonosulfate (PMS) activation by exploring the Fe(III)/Fe(II) cycle of FeOCl in the presence of hydroxylamine (HA). With 0.2 g/L FeOCl, 1.5 mM PMS, and 1 mM HA, the PMS/FeOCl/HA system could effectively achieve 98.88% of the oxidative degradation of 5 mg/L ciprofloxacin (CIP) in 15 min and quickly inactivate 99.99% of E. coli (108 CFU/mL) in 5 min at near-neutral pH. HA played an important role in promoting the Fe(III)/Fe(II) cycle, thereby greatly improving the oxidation activity of the system. The reactive oxygen species (ROS) such as HO, SO4- and O2- were identified as the dominated free radicals produced in the system. The intermediate products of CIP detected by liquid chromatograph-mass spectrometer (LC-MS) and three possible degradation pathways of CIP were proposed. The presence of common anions in the PMS/FeOCl/HA system, including HCO3-, Cl-, SO42-, and NO3-, enhanced the degradation efficiency of CIP to varying degrees at the concentrations of 10 mM. Moreover, FeOCl maintained a high degradation capability for CIP after several recycles. This work offers a new promising means of catalyzing the PMS-based AOPs in the degradation of refractory organics.


Assuntos
Ciprofloxacina , Compostos Férricos , Desinfecção , Escherichia coli , Hidroxilamina , Hidroxilaminas , Compostos de Ferro , Peróxidos
18.
Exp Biol Med (Maywood) ; 246(21): 2297-2306, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34225474

RESUMO

The soluble form of the suppression of tumorigenicity-2 (sST2) is a biomarker for risk classification and prognosis of heart failure, and its production and secretion in the alveolar epithelium are significantly correlated with the inflammation-inducing in pulmonary diseases. However, the predictive value of sST2 in pulmonary disease had not been widely studied. This study investigated the potential value in prognosis and risk classification of sST2 in patients with community-acquired pneumonia. Clinical data of ninety-three CAP inpatients were retrieved and their sST2 and other clinical indices were studied. Cox regression models were constructed to probe the sST2's predictive value for patients' restoring clinical stability and its additive effect on pneumonia severity index and CURB-65 scores. Patients who did not reach clinical stability within the defined time (30 days from hospitalization) have had significantly higher levels of sST2 at admission (P < 0.05). In univariate and multivariate Cox regression analysis, a high sST2 level (≥72.8 ng/mL) was an independent reverse predictor of clinical stability (P < 0.05). The Cox regression model combined with sST2 and CURB-65 (AUC: 0.96) provided a more accurate risk classification than CURB-65 (AUC:0.89) alone (NRI: 1.18, IDI: 0.16, P < 0.05). The Cox regression model combined with sST2 and pneumonia severity index (AUC: 0.96) also provided a more accurate risk classification than pneumonia severity index (AUC:0.93) alone (NRI: 0.06; IDI: 0.06, P < 0.05). sST2 at admission can be used as an independent early prognostic indicator for CAP patients. Moreover, it can improve the predictive power of CURB-65 and pneumonia severity index score.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Pneumonia Bacteriana/diagnóstico , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Bacteriana/sangue , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
19.
FEBS Lett ; 595(13): 1819-1824, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961290

RESUMO

We previously observed enhanced immunoglobulin A (IgA) responses in severe COVID-19, which might confer damaging effects. Given the important role of IgA in immune and inflammatory responses, the aim of this study was to investigate the dynamic response of the IgA isotype switch factor TGF-ß1 in COVID-19 patients. We observed, in a total of 153 COVID-19 patients, that the serum levels of TGF-ß1 were increased significantly at the early and middle stages of COVID-19, and correlated with the levels of SARS-CoV-2-specific IgA, as well as with the APACHE II score in patients with severe disease. In view of the genetic association of the TGF-ß1 activator THBS3 with severe COVID-19 identified by the COVID-19 Host Genetics Initiative, this study suggests TGF-ß1 may play a key role in COVID-19.


Assuntos
COVID-19/imunologia , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Trombospondinas/genética , Fator de Crescimento Transformador beta1/sangue , APACHE , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/genética , Feminino , Humanos , Imunoglobulina A/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
20.
Exp Biol Med (Maywood) ; 246(14): 1586-1596, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33957804

RESUMO

While there is no cure for chronic obstructive pulmonary disease (COPD), its progressive nature and the formidable challenge to manage its symptoms warrant a more extensive study of the pathogenesis and related mechanisms. A new emphasis on COPD study is the change of energy metabolism. For the first time, this study investigated the anaerobic and aerobic energy metabolic pathways in COPD using the metabolomic approach. Metabolomic analysis was used to investigate energy metabolites in 140 COPD patients. The significance of energy metabolism in COPD was comprehensively explored by the Global Initiative for Chronic Obstructive Lung Disease-GOLD grading, acute exacerbation vs. stable phase (either clinical stability or four-week stable phase), age group, smoking index, lung function, and COPD Assessment Test (CAT) score. Through comprehensive evaluation, we found that COPD patients have a significant imbalance in the aerobic and anaerobic energy metabolisms in resting state, and a high tendency of anaerobic energy supply mechanism that correlates positively with disease progression. This study highlighted the significance of anaerobic and low-efficiency energy supply pathways in lung injury and linked it to the energy-inflammation-lung ventilatory function and the motion limitation mechanism in COPD patients, which implies a novel therapeutic direction for this devastating disease.


Assuntos
Glicólise , Metaboloma , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Respiração Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...